微分方程万能公式,微分方程的公式表
微分方程万能公式?
一阶微分方程
如果式子可以导成y+P(x)y=Q(x)的形式,利用公式y=[∫Q(x)e^(∫P(x)dx)+C]e^(-∫P(x)dx)求解
若式子可变形为y=f(y/x)的形式,设y/x=u 利用公式du/(f(u)-u)=dx/x求解
若式子可整理为dy/f(y)=dx/g(x)的形式,用分离系数法,两边积分求解
二阶微分方程
y+py+q=0 可以将其化为r^2+pr+q=0 算出两根为r1,r2。
1 若实根r1不等于r2 y=c1*e^(r1x)+c2*e^(r2x).
2 若实根r1=r2 y=(c1+c2x)*e^(r1x)
3 若有一对共轭复根 r1=α+βi r2=α-βi y=e^(αx)[C1cosβ+C2sinβ]
前几天刚考完试,根据常出的题型自己做的总结,希望有用处O(∩_∩)O~
解微分方程,为了得到通解,确实需要技巧的,每种类型的方程都有自己特定的解法。
function dx=tf(t,x) %保存默认的格式 tf.m
dx=zeros(2,1);
dx(1)=0.01*x(1)*x(2)-0.9*x(2);
dx(2)=0.4*x(1)-0.02*x(1)*x(2);
%%%%%主程序调用
[t,x]=ode45(tf,[0 10],[50000 200]) %[0 10] %时间起始点 ,[50000 200]) 初值设置 没有.但有通用的解法,那就数值解法.数值解法是常用的.也是能够体现数学之有用之处的.
万用公式肯定没有,如果是求数值解或者级数解的话有很多类型的方程解法是一样的。
不过假如仅仅指高数里面的微分方程那非常容易。
高等数学当中的一阶微分方程都是有固定解法的一类,解方程的关键是辨识要求解的方程是什么类型。
可分离变量型,往往是y=f(x)/g(y)或者y=f(x)g(y)这种,直接移项变为g(y)dy=f(x)dx两边积分就可解。
求根公式型(包括常数变易法公式),往往是y=p(x)y+q(x)的形式或者经非常简短的变形就可以化为这种形式,直接套用求根公式求解。
伯努利(Bernoulli)方程,y=p(x)y+q(x)y^n,做代换z=y^(1-n)可解,高数中含有y的2次方以上绝大多数都是这种方程。
全微分方程,M(x,y)dx+N(x,y)dy=0。高数当中不涉及可以化为全微分方程的题目,所以涉及的全微分方程都是直接就是这种形式。用凑微分法或者直接积分公式都能解。
高阶常系数微分方程只需记住齐次通解公式和两个特解形式就可以做任何题。
欧拉方程记下来它的算子法或者是变量代换法也足矣了。
微分方程通解公式:y=(x-2)³C(x-2)(C是积分常数)。形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶指的是方程中关于Y的导数是一阶导数。线性指的是方程简化后的每一项关于y、y'的次数为0或1。
微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。
微分方程公式表?
微分方程通解公式:y=(x-2)³C(x-2)(C是积分常数)。形如y+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶指的是方程中关于Y的导数是一阶导数。线性指的是方程简化后的每一项关于y、y的次数为0或1。
微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。
16个微积分基本公式?
微积分基本公式是牛顿-莱布尼茨公式。

1、通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f(x)dx。

2、积分分为2种,其中一种定积分就是求累积起来的量,比如求长度、面积、体积等。为什么说累积,因为无穷多点构成线长度,无穷多线构成面面积,无穷多面构成体体积。二元微分学用平面逼近某曲面,的曲面某点的切平面。

3、积分在初等数学的范围内是无法求解的,但可以通过转化为二重积分求其广义积分。f是一个关于x和y的函数,称为向量场的势函数。这样叫的原因来自于物理学,在物理学里面,把电势或者重力势称为势能。
微积分计算公式?
微积分公式是:Dx sin x=cos x,cos x = -sin x,tan x = sec2 x,cot x = -csc2 x,sec x = sec x tan x等等,积分是微分的逆运算,即知道了函数的导函数,反求原函数,在应用上还被大量应用于求和,即求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
另外主要分为定积分、不定积分以及其他积分,积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等,而不定积分含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分等。
全微分积分公式?
全微分公式:dz=z(x)dx+z(y)dy。其中A、B不依赖于Δx,Δy,仅与x,y有关,ρ趋近于0(ρ=√[(Δx)2+(Δy)2]),此时称函数z=f(x,y)在点(x,y)处可微分。微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。
积分运算法则公式?
积分运算公式:∫0dx=C(2)=ln|x|+C。积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
微分方程通解公式?
微分方程的通解公式:
y=y1+y* = 1/2 + ae^(-x) +be^(-2x),其中:a、b由初始条件确定。
如下例题
全微分方程通解公式:udx+vdy=0。微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割
一阶微分方程如果式子可以导成y+P(x)y=Q(x)的形式,利用公式y=[∫Q(x)e^(∫P(x)dx)+C]e^(-∫P(x)dx)求解若式子可变形为y=f(y/x)的形式,设y/x=u 利用公式du/(f(u)-u)=dx/x求解若式子可整理为dy/f(y)=dx/g(x)的形式,用分离系数法,两边积分求解二阶微分方程y+py+q=0 可以将其化为r^2+pr+q=0 算出两根为r1,r2. 1 若实根r1不等于r2 y=c1*e^(r1x)+c2*e^(r2x). 2 若实根r1=r2 y=(c1+c2x)*e^(r1x) 3 若有一对共轭复根 r1=α+βi r2=α-βi y=e^(αx)[C1cosβ+C2sinβ]
积分怎么求导?
对有积分上下限函数的求导的公式:[∫(a,c)f(x)dx]=0。

1、积分是微积分学与数学分析里的一个核心概念。积分是累加的一种形式,可以简单看成是无限项无限小的和。微积分是两个东西的统称,微分和积分,二者互为逆运算。积分是一种特殊的累加运算,不定积分就是已知一个函数的导数,要求的原函数,因为这样的原函数有无限多个,所以叫不定。

2、积分上限函数求导法则:先将积分限带入积分函数,再对积分限进行求导,如果积分函数带有自变量,想办法将其弄到积分号外面来。积分上限函数,设函数在区间上连续,并且设为上的一点,考察定积分。

3、微分:设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
例如:f (x)=x平方 的导数是 f (x)=2x
那么相应的就是2X反过来是X的平方
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。
一般来说定积分求导出来是0,变上限积分求导就按照课本上的求导公式代入求导即可。
求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。求导方法如下:
求导四则运算法则与性质:
若函数u(x),v(x)都可导,则
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);
如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记作
即:
需要指出的是:
两者在数学上是等价的。
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。