焓变和熵变的计算公式,标准摩尔熵变计算公式

焓变和熵变的计算公式?
在无限接近相平衡条件下,进行的相变为可逆相变过程。即针对两相在一定温度时的相平衡压力下出现的可逆相变化,过程体系的熵变(蒸发熵、熔化熵、升华熵)的计算为:
一AfHApS=:T式中ApH-相变热,a和B代表两种相态。
因为熔化、升华、蒸发过程都是吸热过程,即相变热为正值,故此,熔化、升华、蒸发过程都是熵增多过程。
针对不可逆相变过程体系的熵变计算,还需按照给定相变的始态和终态,设计一条可逆的变化途径,然后求得各可逆过程的熵变之和,即得对应的熵变。
焓变是生成物与反应物的焓值差。作为一个描述系统状态的状态函数,焓变没有明确的物理意义。ΔH(焓变)表示的是系统出现一个过程的焓的增量。
ΔH=ΔU+Δ(pV)
在恒压条件下,ΔH(焓变)数值上等于恒压反应热。焓变是制约化学反应能不能出现的重要原因之一
标准摩尔熵变如何计算?
标准摩尔熵变计算公式:针对反应aA+Bb=eE+dD,有△rSm一(298k)=(eSm一(E)+ dHm一(D))-(aHm一(A)+bHm一(B))。
针对化学反应来说,若反应物和产物都处于标准状态下,则反应过程的熵变,即为该反应的标准熵变。当反应进度为单位反应进度时,反应的标准熵变为该反应的标准摩尔熵变,以△rSm(-)表示。与反应的标准焓变的计算相似,化学反应的标准摩尔熵变,可由生成物与反应物的标准熵求得。
定压过程:计算熵增△S=mc p ㏑(t2/t1)
等温过程熵的计算公式?
热力学中的等熵过程(isentropic process)指的是途中没有出现熵变,熵值保持恒定的过程。可逆绝热过程是一种等熵过程。等熵过程在温度-熵图(T-S图)中是平行于温度轴的线段。等熵过程的对立面是等温过程,在等温途中,大限度的热量被转移到了外界,让系统温度恒定如常。
在等熵途中,不仅气体与外界交换的总热量为零,而且,在过程进行的每一微元段与外界交换热量也是零,故此,可逆绝热过程是dp=0和q=0。
等熵过程就是可逆绝热过程,在等熵途中,气体的温度、压力、比热容都出现变化,它们当中的变化规律比较复杂。等熵途中的熵值不变,故此,该过程在T—S图上是一根与S坐标轴相垂直的直线。
克劳修斯第一次从宏观的视角提出熵概念,其计算公式为:S=Q/T,(计算熵差时,式中应为△Q)
2、波尔兹曼又从微观的视角提出熵概念,公式为:S=klnΩ,Ω是微观状态数,一般又把S当作描述混乱成度的量。
3、笔者针对Ω不易理解、使用不便的现状,研究觉得Ω与理想气体体系的宏观参量成正比,即:Ω(T)=(T/εT)3/2,Ω(V)=V/εV,得到理想气体的体积熵为SV=klnΩv=klnV,温度熵为ST=klnΩT=(3/2)klnT ,计算任意过程的熵差公式为△S=(3/2)kln(T'/T)+kln(V'/V),这微观与宏观关系式及分熵公式,具有易于理解、使用方便的特点,促进教和学,可称为第三代熵公式。
上面说的三代熵公式,使用的物理量从形式上看具有"直观→抽象→直观"的特点,我们觉得这不是概念游戏是对熵概念认识的一次飞跃。
拓展资料
熵定律是科学定律之,这是爱因斯坦的观点。我们清楚能源与材料、信息一样是物质世界的三个基本要素之一,而在物理定律中,能量守恒定律是重要,要优先集中精力的定律,它表达了各自不同的形式的能量在相互转换时,总是不生不灭保持平衡的。熵的概念早起源自于物理学,用于度量一个热力学系统的无序程度。热力学第二定律,又称"熵增定律",表达了在自然途中,一个孤立系统的总混乱度(即"熵")不会减小。
具体内容
高定律
在等势面上,熵增原理反映了非热能与热能当中的转换具有方向性,即非热能转变为热能效率可以百分之100,而热能转变成非热能时效率则小于百分之100(转换效率与温差成正比),这样的规律制约着自然界能源的演变方向,对人类生产、生活影响巨大;在重力场中,热流方向由体系的势焓(势能+焓)差决定,即热量自动地从高势焓区传导至低势焓区,当产生高势焓区低温和低势焓区高温时,热量自动地从低温区传导至高温区,且不需付出其它代价,即绝对熵减过程。
明显熵所描述的能量转化规律比能量守恒定律更加重要,通俗地讲:熵定律是"老板",决定着企业的发展方向,而能量守恒定律是"出纳",负责收支平衡,故此,说熵定律是自然界的高定律。
分熵的特点
熵概念源自于卡诺热机循环效率的研究是以热温商的形式而问世的,当计算某体系出现状态变化所导致的熵变总离不开两点,一是可逆过程;二是热量的得失,故总熵概念摆脱不了热温商这个原始外衣。当用状态数来认识熵的实质时,我们通过研究发现,理想气体体系的总微观状态数受宏观的体积、温度参数的控制,进一步得到体系的总熵等于体积熵与温度熵之和(见相关文章),用分熵概念考察体系的熵变化,没有必要设计什么可逆路径,概念直观、计算方便(已被部分专家认可),因而促进教和学。
熵流
熵流是普里戈津在研究热力学开放系统时第一次提出的概念(普里戈津是比利时科学家,因对热力学理论带来一定发展,取得1977年诺贝尔化学奖),普氏的熵流概念是指系统与外界交换的物质流及能量流。
我们觉得这个定义不太精辟,这应该从熵的实质来认识它,不错物质流一定是熵的载体,而能量流则未必,能量可分热能和非热能[如电能、机械能、光能(不是热辐射)],当某绝热系统与外界交换非热能(出现可逆变化)时,如通电导线(超导材料)经过绝热系统内,对体系内熵没有影响,准确地说能量流中唯有热能流(含热辐射)能引人熵流(对非绝热系统)。
针对实质上情形,非热能作用于系统出现的多是不可逆过程,会有热效应出现,这时系统产生熵增多,这只可以叫(有因素的)熵出现,而不可以叫熵流的流入,因能量流不等于熵流,故此,不论什么形式的非热能流都不可以叫熵流,更不可以笼统地把能量流称为熵流。
熵变的公式推导?
计算熵变的三个公式请看下方具体内容:
1、已知定压比热、温度、压力:按照公式△S1-2=CPln(T2/T1)-Rgln(P2/P1)进行计算这当中,△S1-2为由状态1到状态2的熵变化量,J/(kg·K)。
CP为定压比热,J/(kg·K);T1、T2为状态1和2的热力学温度,K;P1、P2为状态1和2的绝对压力,Pa;Rg为气体常数,J/(kg·K)。
2、已知定容比热、温度、比体积:
按照公式△S1-2=CVln(T2/T1)+Rgln(v2/v1)进行计算这当中,△S1-2为由状态1到状态2的熵变化量,J/(kg·K);CV为定容比热,J/(kg·K)。
T1、T2为状态1和2的热力学温度,K;v1、v2为状态1和2的比体积,m3/kg;Rg为气体常数,J/(kg·K)。
3、已知定容比热、定压比热、压力、比体积:
按照公式△S1-2=CVln(P2/P1)+CPln(v2/v1)进行计算这当中,△S1-2为由状态1到状态2的熵变化量,J/(kg·K);CV为定容比热,J/(kg·K);CP为定压比热,J/(kg·K);P1、P2为状态1和2的绝对压力,Pa;v1、v2为状态1和2的比体积,m3/kg。
化学中的熵变
体系混乱度的状态函数为熵,熵是有加和性质的状态函数。在一个途中,系统混乱度出现改变,称之为熵变,其实就是常说的△S。计算
(1)应用公式S=klnΩ 进行时△S=S2-S1
(2)恒温可逆过程△S=Qr/T
(3)应用吉布斯自由能方程计算△G=△H-△TS
往混乱度增大的方向反应△S大于零,相反△S小于零。比较混乱度方式固<液<气 同状态,分子构成原子数一样,分子体积越大,混乱度越大。
放热熵变公式?
计算公式
1、克劳修斯第一次从宏观的视角提出熵概念,其计算公式为:S=Q/T,(计算熵差时,式中应为△Q)
2、波尔兹曼又从微观的视角提出熵概念,公式为:S=klnΩ,Ω是微观状态数,一般又把S当作描述混乱成度的量。
3、笔者针对Ω不易理解、使用不便的现状,研究觉得Ω与理想气体体系的宏观参量成正比,即:Ω(T)=(T/εT)3/2,Ω(V)=V/εV,得到理想气体的体积熵为SV=klnΩv=klnV,温度熵为ST=klnΩT=(3/2)klnT ,计算任意过程的熵差公式为△S=(3/2)kln(T/T)+kln(V/V),这微观与宏观关系式及分熵公式,具有易于理解、使用方便的特点,促进教和学,可称为第三代熵公式。
上面说的三代熵公式,使用的物理量从形式上看具有直观→抽象→直观的特点,我们觉得这不是概念游戏是对熵概念认识的一次飞跃。
在热化学反应方程式中,后头的焓变量和熵变量是咋算的?
生成物焓的总和减去反应物焓的总和;熵变的计算方式与焓变的计算方式一样
注册会计师考试资料下载
华宇考试网CPA注会免费资料下载
百度云网盘资料
CPA注会视频课程
©下载资源版权归作者所有;本站所有资源均来源于网络,仅供学习使用,请支持正版!
相关推荐:
- 焓变和熵变的计算公式,熵变与焓变公式推导
注册会计师培训班-辅导课程

>>注册会计培训班视频课程,听名师讲解<<

>>注册会计培训班视频课程,听名师讲解<<
(编辑:华宇考试网相关博客:注册会计师)
华宇考试网CPA注会免费资料下载
-
百度云网盘资料
CPA注会视频课程
©下载资源版权归作者所有;本站所有资源均来源于网络,仅供学习使用,请支持正版!
- 焓变和熵变的计算公式,熵变与焓变公式推导
相关推荐:
注册会计师培训班-辅导课程

>>注册会计培训班视频课程,听名师讲解<<

>>注册会计培训班视频课程,听名师讲解<<